项目中缓存是如何使用的?缓存如果使用不当会造成什么后果?
用缓存,主要是俩用途,高性能和高并发
1)高性能
假设这么个场景,你有个操作,一个请求过来,吭哧吭哧你各种乱七八糟操作mysql,半天查出来一个结果,耗时600ms。但是这个结果可能接下来几个小时都不会变了,或者变了也可以不用立即反馈给用户。那么此时咋办?
缓存啊,折腾600ms查出来的结果,扔缓存里,一个key对应一个value,下次再有人查,别走mysql折腾600ms了。直接从缓存里,通过一个key查出来一个value,2ms搞定。性能提升300倍。
这就是所谓的高性能。
就是把你一些复杂操作耗时查出来的结果,如果确定后面不咋变了,然后但是马上还有很多读请求,那么直接结果放缓存,后面直接读缓存就好了。
2)高并发
mysql这么重的数据库,压根儿设计不是让你玩儿高并发的,虽然也可以玩儿,但是天然支持不好。mysql单机支撑到2000qps也开始容易报警了。
所以要是你有个系统,高峰期一秒钟过来的请求有1万,那一个mysql单机绝对会死掉。你这个时候就只能上缓存,把很多数据放缓存,别放mysql。缓存功能简单,说白了就是key-value式操作,单机支撑的并发量轻松一秒几万十几万,支撑高并发so easy。单机承载并发量是mysql单机的几十倍。
3)所以你要结合这俩场景考虑一下,你为啥要用缓存?
一般很多同学项目里没啥高并发场景,那就别折腾了,直接用高性能那个场景吧,就思考有没有可以缓存结果的复杂查询场景,后续可以大幅度提升性能,优化用户体验,有,就说这个理由,没有??那你也得编一个出来吧,不然你不是在搞笑么
(3)用了缓存之后会有啥不良的后果?
呵呵。。。你要是没考虑过这个问题,那你就尴尬了,面试官会觉得你头脑简单,四肢也不发达。你别光是傻用一个东西,多考虑考虑背后的一些事儿。
常见的缓存问题有仨(当然其实有很多,我这里就说仨,你能说出来也可以了)
1)缓存与数据库双写不一致
2)缓存雪崩
3)缓存穿透
4)缓存并发竞争
redis的过期策略都有哪些?内存淘汰机制都有哪些?手写一下LRU代码实现?
(1)设置过期时间
我们set key的时候,都可以给一个expire time,就是过期时间,指定这个key比如说只能存活1个小时?10分钟?这个很有用,我们自己可以指定缓存到期就失效。
如果假设你设置一个一批key只能存活1个小时,那么接下来1小时后,redis是怎么对这批key进行删除的?
答案是:定期删除+惰性删除
所谓定期删除,指的是redis默认是每隔100ms就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删除。假设redis里放了10万个key,都设置了过期时间,你每隔几百毫秒,就检查10万个key,那redis基本上就死了,cpu负载会很高的,消耗在你的检查过期key上了。注意,这里可不是每隔100ms就遍历所有的设置过期时间的key,那样就是一场性能上的灾难。实际上redis是每隔100ms随机抽取一些key来检查和删除的。
但是问题是,定期删除可能会导致很多过期key到了时间并没有被删除掉,那咋整呢?所以就是惰性删除了。这就是说,在你获取某个key的时候,redis会检查一下 ,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。
并不是key到时间就被删除掉,而是你查询这个key的时候,redis再懒惰的检查一下
通过上述两种手段结合起来,保证过期的key一定会被干掉。
很简单,就是说,你的过期key,靠定期删除没有被删除掉,还停留在内存里,占用着你的内存呢,除非你的系统去查一下那个key,才会被redis给删除掉。
但是实际上这还是有问题的,如果定期删除漏掉了很多过期key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期key堆积在内存里,导致redis内存块耗尽了,咋整?
答案是:走内存淘汰机制。
(2)内存淘汰
如果redis的内存占用过多的时候,此时会进行内存淘汰,有如下一些策略:
redis 10个key,现在已经满了,redis需要删除掉5个key
1个key,最近1分钟被查询了100次
1个key,最近10分钟被查询了50次
1个key,最近1个小时倍查询了1次
1)noeviction:当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了
2)allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key(这个是最常用的)
3)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的key给干掉啊
4)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key(这个一般不太合适)
5)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key
6)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除
百度,问题啊,网上鱼龙混杂
如果百度一些api操作,入门的知识,ok的,随便找一个博客都可以
一些高级别的,redis单线程模型
很简单,你写的数据太多,内存满了,或者触发了什么条件,redis lru,自动给你清理掉了一些最近很少使用的数据
(3)要不你手写一个LRU算法?
我确实有时会问这个,因为有些候选人如果确实过五关斩六将,前面的问题都答的很好,那么其实让他写一下LRU算法,可以考察一下编码功底
你可以现场手写最原始的LRU算法,那个代码量太大了,我觉得不太现实
public class LRUCache<K, V> extends LinkedHashMap<K, V> {
private final int CACHE_SIZE;
// 这里就是传递进来最多能缓存多少数据
public LRUCache(int cacheSize) {
super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true); // 这块就是设置一个hashmap的初始大小,同时最后一个true指的是让linkedhashmap按照访问顺序来进行排序,最近访问的放在头,最老访问的就在尾
CACHE_SIZE = cacheSize;
}
@Override
protected boolean removeEldestEntry(Map.Entry eldest) {
return size() > CACHE_SIZE; // 这个意思就是说当map中的数据量大于指定的缓存个数的时候,就自动删除最老的数据
}
}我给你看上面的代码,是告诉你最起码你也得写出来上面那种代码,不求自己纯手工从底层开始打造出自己的LRU,但是起码知道如何利用已有的jdk数据结构实现一个java版的LRU。
如何保证Redis的高并发和高可用?redis的主从复制原理能介绍一下么?redis的哨兵原理能介绍一下么?
就是如果你用redis缓存技术的话,肯定要考虑如何用redis来加多台机器,保证redis是高并发的,还有就是如何让Redis保证自己不是挂掉以后就直接死掉了,redis高可用
我这里会选用我之前讲解过这一块内容,redis高并发、高可用、缓存一致性
redis高并发:主从架构,一主多从,一般来说,很多项目其实就足够了,单主用来写入数据,单机几万QPS,多从用来查询数据,多个从实例可以提供每秒10万的QPS。
redis高并发的同时,还需要容纳大量的数据:一主多从,每个实例都容纳了完整的数据,比如redis主就10G的内存量,其实你就最对只能容纳10g的数据量。如果你的缓存要容纳的数据量很大,达到了几十g,甚至几百g,或者是几t,那你就需要redis集群,而且用redis集群之后,可以提供可能每秒几十万的读写并发。
redis高可用:如果你做主从架构部署,其实就是加上哨兵就可以了,就可以实现,任何一个实例宕机,自动会进行主备切换。
最后更新于